Difference between revisions of "Self Driving RC Car/2020"

From BITPlan Wiki
Jump to navigation Jump to search
Line 236: Line 236:
 
- start 'CarServer' in module 'rc-server' in IDE
 
- start 'CarServer' in module 'rc-server' in IDE
 
- point your browser to http://localhost:8080
 
- point your browser to http://localhost:8080
=== Creating a Fat Jar of the server ===
+
=== Creating a fatjar of the server ===
 
<source lang='bash'>
 
<source lang='bash'>
 
../scripts/install.sh -h
 
../scripts/install.sh -h

Revision as of 19:20, 28 June 2019

[edit]

[edit]

Parts-List as Excel File

# picture part example sources documents ~ price
1 RC Car Chassis 2019-06-07.jpeg 1:10 RC Car chassis
  1. 1:10 elektro tourenwagen chassis ARR
  2. TAMIYA 57986" 1:10 RC TT-02-Chassis First Try On-Road 
  1. de/en/fr/nl
  2. Tamiya 57986
70 €
2 SpeedControl 2019-06-06.jpg Speed Control Modelcraft Carbon Series Speed Control "20 Turns" de/en/fr/nl 21 €
3 RC Car Servo 2019-06-06.jpg RC-Car servo  
  1. RC-Car servo 4519
  2. Carson 500502036 - Servo CS-6 - 6 kg/JR-Stecker
de/en 10 €
4 TopFuel-LiPo-25C-ECO-X-1300mAh-3S-21300341 b 0.JPG 
  1. TopFuel LiPo 25C-ECO-X 1300mAh 3S 
  2. NiMH 7.2V 3500 mAh
  16 €
5 Absima CB 1S BatteryCharger 2019-06-06.jpg Battery Charger
  1. Ansmann NiMH Charger
27 €
6 713LX1Z383L. SL1500 .jpg Raspberry PI 3 B+ Raspberry PI 3 B+ en  35 €
7 81UBu4aoQHL. SL1500 .jpg  microSD Card SanDisk 16 GB 7 €
8 61Z5yEYfnAL. SL1426 .jpg Raspberry PI Camera 1080 p Camera Module 23 €
9  41smcErJNjL.jpg DC/DC Converter 12 V-> 5V 12 V->5 V Converter Module    7 €
10 31pzC7A3D3L.jpg Micro USB Connector Delock USB 2.0 Micro USB   6 €
        Total  199 €
a 71AYEqpWHcL. SL1500 .jpg Breadbord Kit MB102 Breadbord Kit 7 €
b 714Ep9LpwoL. SL1200 .jpg Ulrasound Sensor 5 x HC-SR04 + Cables 10 €
[edit]

DCC-DCC converter

To run the Raspberry PI from the 7.4 Volt Battery of the car the DC-DC converter has to be soldered into the voltage supply chain.

Camera mount

Servo and LED

RcCarWiring2019-06-22.png

[edit]

For a start a 3D Printed case for the Raspberry PI was used:

2094b280ac54121f9dad5fc172b1a3eb_preview_featured.jpg 081727802f13879a77f4b8bfbd0277d1_preview_featured.jpg

RaspberryWithCaseIMG 0025.JPG

[edit]

Raspbian

Raspbian Stretch with desktop and recommended software

  1. Download Zip File from https://www.raspberrypi.org/downloads/raspbian/
  2. Create SD Card as described in https://www.raspberrypi.org/documentation/installation/installing-images/
  3. Insert SD Card into Raspberry PI
  4. Connect Keyboard, Mouse, HDMI-Monitor and 5 Volt Mini USB (2.5 Amps recommended)
  5. Setup Country, pi user password etc. and connect to your WIFI network - after the setup you'll be asked to restart your pi

WebCam Interface

cd /usr/local/src
sudo git clone https://github.com/silvanmelchior/RPi_Cam_Web_Interface.git
cd RPi_Cam_Web_Interface/
./install.sh

WebCamInterface2019-06-21.png

In case of error

A message like:

#mmal: mmal_component_create_core: could not create component 'vc.ril.camera' (1)
sh: 1: /var/www/html/macros/error_hard.sh: Permission denied

Indicates that you might have a cabling problem.

In case of success

http://<yourpi>/html should show the cam interface: RpiCamControl2019-06-21.png

Servo Interface - Servoblaster

wf@pibee:~ $ cd /usr/local/src
wf@pibee:/usr/local/src $ sudo git clone https://github.com/srcshelton/servoblaster
cd servoblaster
sudo make install
sudo reboot

OpenJDK

sudo apt-get install openjdk-8-jdk

Screen

sudo apt-get install screen
[edit]

Tested on

  1. Mac OS 10.13.6 High Sierra with macports 2.5.4
  2. Ubuntu 18.04.2 LTS

OpenCV

MacOS

If you'd like to generally use OpenCV you can get it e.g. from the macports project:

sudo port install opencv +java
ls /opt/local/share/OpenCV/java
libopencv_java343.dylib opencv-343.jar

For your convenience you'll find these two files in the lib directory.

Ubuntu 18

You might want to use scripts/opencvubuntu to download the 75 MByte libopencv_java343.so and install the backports libjasper libraries that are not published with Ubuntu 18 by default. You'll find some other links in the script that might also give you hints on how to proceed if you have another environment or different needs. You might want to create an Issue if you run into trouble.

Windows

Help Wanted -please file an issue if you want to things running on Windows.

[edit]

Deploying to your Raspberry is done by compiling e.g. on a laptop and then transferring the results to your PI.

Compile

scripts/install.sh

There is a usage for this script if you call it with scripts/install.sh -h. Essentially this is doing a mvn clean install. The clean part is important to get the platform specific native openCV Library integrated into the server code.

Example Configuration

You need to configure your PI's host address and user in a file ~/dukes/dukes.ini in the remotecar section. Also you need to check your GPIO pins and the servo settings for your car for LED,Engine and Wheels. You might want to try these things out before using the software the first time.

The original wiring is:

  • MOTOR: GPIO-17 - Servoblaster ID 1
  • WHEEL: GPIO-18 - Servoblaster ID 2
  • LED: GPIO-24 - Servolbaster ID 6

The software uses the standard Servoblaster ID's above which are hard-coded at this time. The GPIO configuration will only work with other devices which we intend to support in the future.

#
# WF 2019-06-21
#
# rc-duke configuration file
# remote car raspberry PI configuration
remotecar.host=2.0.0.111
remotecar.user=wf
# camera url format
camera.url=http://2.0.0.111/html/cam_pic_new.php
# webserver configuration
webcontrol.port=8080
imageview.port=8081
# be careful with your GPIO configuration
# you might damage your PI with a misconfiguration!
# led configuration
led.gpio=24
led.on=250
led.off=0
# wheel configuration
wheel.gpio=18
wheel.center=130
wheel.stepsize=5
wheel.maxleft=100
wheel.maxright=160
# engine configuration
engine.gpio=17
engine.speed.zero=130
engine.stepsize=1
engine.min.speed.reverse=130
engine.max.speed.reverse=130
engine.min.speed.forward=155
engine.max.speed.forward=157

The deploy script as a help option that shows how it can be used:

deploy.sh [-a|-d|-h|-m|-s]

  -a |--autostart         : configure the remotecar app to autostart on reboot
  -d |--debug             : debug this script
  -m |--maven             : run maven install
  -h |--help              : show this usage
  -s |--start             : deploy and start remotecar (duke) fat jar
  • deploy -m will create the duke-farm fat jar
  • deploy -s will send the jar to your PI using rsync and start it
  • deploy -a will create an autostart configuration that restarts the client on reboot see https://github.com/rc-dukes/dukes/issues/26

Running the server

- start 'CarServer' in module 'rc-server' in IDE - point your browser to http://localhost:8080

Creating a fatjar of the server

../scripts/install.sh -h
usage: install.sh [-d|-f|-j|-q]* [-h]?

  -d |--debug        : debug this script
  -f |--fatjar       : create a fat jar
  -j |--javadoc      : with javadoc (default is without)
  -q |--quick        : no tests, no javadoc

  -h |--help         : show this usage

From the rc-server directory ../scripts/install.sh -f -q should create a fat jar with the maven assembly-plugin

java -jar target/rc-server-0.0.2-jar-with-dependencies.jar

(Please replace 0.0.2 with the current version of the project)

Should then start the server and the web ui should be available by either using

http://localhost:8080 or using the index.html file or detect.html files from the sources in rc-webcontrol/src/main/resources/web/