Difference between revisions of "PlayChessWithAWebCam/BoardFinder"

From BITPlan Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
</source>
 
</source>
 
=== finding the chessboard corners ===
 
=== finding the chessboard corners ===
The find method starts the board finding. The Boardfinder will try out different patterns from 7x7 down to 3x3. Since a successfull find is much quicker than an unsuccessful one and since searching a small image is much faster than a big one the width of the searchImages can be specified. The default is 640 pixels. For the 13 tests images the search is even successful when the searchWidth is only 360 pixels. The difference in speed is approximately a factor of 1.5. Searching 13 test images and creating all the debug images takes around 10 seconds.
+
The find method starts the board finding. The Boardfinder will try out different patterns from 7x7 down to 3x3. In fact we only need to check: 7x7, 7x5, 5x5, 5x3, and 3x3 for want of an even number of squares to be detected. We do not try 9x9 which would give us the full 8x8 board since it's very unlikely that our real chessboard will fulfill the requirements of the OpenCV algorithm mentioned in it's footnote: "
 +
''
 +
'''Note
 +
'''
 +
The function requires white space (like a square-thick border, the wider the better) around the board to make the detection more robust in various environments. Otherwise, if there is no border and the background is dark, the outer black squares cannot be segmented properly and so the square grouping and ordering algorithm fails''. "
 +
 
 +
Since a successfull find is much quicker than an unsuccessful one and since searching a small image is much faster than a big one the width of the searchImages can be specified. The default is 640 pixels. For the 13 tests images the search is even successful when the searchWidth is only 360 pixels. The difference in speed is approximately a factor of 1.5. Searching 13 test images and creating all the debug images takes around 10 seconds.
 
<source lang='python'>
 
<source lang='python'>
 
found=finder.find(limit=1,searchWidth=360)
 
found=finder.find(limit=1,searchWidth=360)

Revision as of 10:43, 1 December 2019

Click here to comment

Source Code

see class BoardFinder in module boardfinder tests are in the test_BoardFinder module

Algorithm

Finding the chessboard

OpenCV has a function findChessboardCorners which is usually used for camera calibration and not really intended for the use case of "real chessboards".

Still it is very helpful and used as a basis for the BoardFinder.

Initializing the BoardFinder

The board finder is initialized with an image. Optionally you can specify the Video instance to be used.

finder = BoardFinder(image,video=video)

finding the chessboard corners

The find method starts the board finding. The Boardfinder will try out different patterns from 7x7 down to 3x3. In fact we only need to check: 7x7, 7x5, 5x5, 5x3, and 3x3 for want of an even number of squares to be detected. We do not try 9x9 which would give us the full 8x8 board since it's very unlikely that our real chessboard will fulfill the requirements of the OpenCV algorithm mentioned in it's footnote: " Note The function requires white space (like a square-thick border, the wider the better) around the board to make the detection more robust in various environments. Otherwise, if there is no border and the background is dark, the outer black squares cannot be segmented properly and so the square grouping and ordering algorithm fails. "

Since a successfull find is much quicker than an unsuccessful one and since searching a small image is much faster than a big one the width of the searchImages can be specified. The default is 640 pixels. For the 13 tests images the search is even successful when the searchWidth is only 360 pixels. The difference in speed is approximately a factor of 1.5. Searching 13 test images and creating all the debug images takes around 10 seconds.
found=finder.find(limit=1,searchWidth=360)

Examples

see testMedia source folder

ChessBoard001.jpgImage001-corners-7x7.jpg ChessBoard002.jpgImage002-corners-5x5.jpg ChessBoard003.jpgImage003-corners-4x5.jpg ChessBoard004.jpgImage004-corners-7x7.jpg ChessBoard005.jpgImage005-corners-5x5.jpg ChessBoard006.jpgImage006-corners-5x5.jpg ChessBoard007.jpgImage007-corners-5x5.jpg ChessBoard008.jpgImage008-corners-7x7.jpg ChessBoard009.jpgImage009-corners-7x7.jpg ChessBoard010.jpgImage010-corners-6x7.jpg ChessBoard011.jpgImage011-corners-7x7.jpg ChessBoard012.jpgImage012-corners-4x6.jpg ChessBoard013.jpgImage013-corners-5x7.jpg

Chessboard008 in detail

ChessBoard008.jpg Image008-corners-7x7.jpg

Polygons

The corners detected can be used to fill the 4 corner polygons. We don't know the colors of the squares yet but we know that a chessboard-pattern was found.

See https://codegolf.stackexchange.com/questions/63772/determine-the-color-of-a-chess-square for some fun code around the issue to determine whether a square is light or dark from its position.

For the time being we guess and might be wrong: Image008-polygons-7x7.jpg

Masking

To find out the colors we mask the detected squares.

Image008-masked-X--7x7.jpg Image008-masked-O--7x7.jpg

Histogram

Now we can create a histogram of the colors found in the two masks Image008-histogram-7x7.jpg

From now on we know which color is white/light and which one is black/dark.

Color filtering

Now we can filter the original image with the color ranges found in the mask / histogram steps.

Image008-colorFiltered-X--7x7.jpg Image008-colorFiltered-O--7x7.jpg