try Beer! If you set min% to 40 and then Generate the SPARQL Query the naive query is something like:
# truly tabular naive query for
# Q44:beer
# generated by trulytabular.py version 0.4.6 on 2022-08-08T15:06:07.716686
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?beerItem ?beer
?image
?manufacturerItem
?Google_Knowledge_Graph_ID
WHERE {
# instanceof Q44:beer
?beerItem wdt:P31 wd:Q44.
# label
?beerItem rdfs:label ?beer.
FILTER (LANG(?beer) = "en").
# image (P18)
OPTIONAL {
?beerItem wdt:P18 ?image.
}
# manufacturer (P176)
OPTIONAL {
?beerItem wdt:P176 ?manufacturerItem.
?manufacturerItem rdfs:label ?manufacturer.
FILTER (LANG(?manufacturer) = "en").
}
# Google Knowledge Graph ID (P2671)
OPTIONAL {
?beerItem wdt:P2671 ?Google_Knowledge_Graph_ID.
}
}
The columns of the truly tabular tool at http://wikidata.bitplan.com are explained at Truly Tabular RDF/Info
In the project to create the ConferenceCorpus as part of the ConfIDent project Scientific Event / Proceedings data needed to be imported from the german national libraries GND Dataset. The query needed to be modified after extensive analysis of the data. The schema definition as specified in the GND ontology alone was not sufficient. Truly Tabular RDF/GND
try Beer! If you set min% to 40 and then Generate the SPARQL Query the naive query is something like:
# truly tabular naive query for
# Q44:beer
# generated by trulytabular.py version 0.4.6 on 2022-08-08T15:06:07.716686
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?beerItem ?beer
?image
?manufacturerItem
?Google_Knowledge_Graph_ID
WHERE {
# instanceof Q44:beer
?beerItem wdt:P31 wd:Q44.
# label
?beerItem rdfs:label ?beer.
FILTER (LANG(?beer) = "en").
# image (P18)
OPTIONAL {
?beerItem wdt:P18 ?image.
}
# manufacturer (P176)
OPTIONAL {
?beerItem wdt:P176 ?manufacturerItem.
?manufacturerItem rdfs:label ?manufacturer.
FILTER (LANG(?manufacturer) = "en").
}
# Google Knowledge Graph ID (P2671)
OPTIONAL {
?beerItem wdt:P2671 ?Google_Knowledge_Graph_ID.
}
}
The columns of the truly tabular tool at http://wikidata.bitplan.com are explained at Truly Tabular RDF/Info
In the project to create the ConferenceCorpus as part of the ConfIDent project Scientific Event / Proceedings data needed to be imported from the german national libraries GND Dataset. The query needed to be modified after extensive analysis of the data. The schema definition as specified in the GND ontology alone was not sufficient. Truly Tabular RDF/GND
A starting point for analyzing the data in a triplestore such as wikidata might be a single item of interest such as the character Jon Snow instance ofGame of thrones character
The file "mwstore://local-backend/local-public/diagrams/archive/20241125010049!Diagrams_e0e7166780b7d81e0bd2a409d32d96d8.png" already exists.
SPARQL Query to count Game of Thrones character items in Wikidata
SELECT (COUNT(DISTINCT ?item) AS ?count) WHERE
{
# Q20086263:Game of Thrones character
?item wdt:P31 wd:Q20086263;
}
try it! The above SPARQL query will let us know the total amount of similar items we might find in Wikidata. which is 117 at the time of writing this work.
A quite natural idea is to create a query now to get a table of all Game of thrones characters with columns for the most interesting aspects.
As a starting point we might use the Wikidata Query Service and select the sample "Cats" and refine it for our purposes with some properties we find on Jon Snows page to create a "naive" query:
# Game of Thrones Characters
SELECT
?item ?itemLabel
?genderLabel
?countryLabel
?placeOfBirthLabel
?placeOfDeathLabel
WHERE
{
?item wdt:P31 wd:Q20086263. # must be a game of thrones character
?item wdt:P21 ?gender.
?item wdt:P27 ?country.
?item wdt:P19 ?placeOfBirth.
?item wdt:P20 ?placeOfDeath.
SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }
}
item | itemLabel | genderLabel | countryLabel | placeOfBirthLabel | placeOfDeathLabel |
---|---|---|---|---|---|
http://www.wikidata.org/entity/Q259818 | Eddard Stark | male | Seven Kingdoms | Winterfell | King's Landing |
http://www.wikidata.org/entity/Q1120793 | Theon Greyjoy | male | Seven Kingdoms | Pyke | Winterfell |
http://www.wikidata.org/entity/Q2941743 | Catelyn Stark | female | Seven Kingdoms | Riverrun | Twins |
http://www.wikidata.org/entity/Q3183235 | Jon Snow | male | Seven Kingdoms | Tower of Joy | Castle Black |
http://www.wikidata.org/entity/Q3665163 | Cersei Lannister | female | Seven Kingdoms | Casterly Rock | Red Keep |
http://www.wikidata.org/entity/Q3806180 | Jaime Lannister | male | Seven Kingdoms | Casterly Rock | Red Keep |
http://www.wikidata.org/entity/Q11680202 | Beric Dondarrion | male | Seven Kingdoms | The Stormlands | Winterfell |
http://www.wikidata.org/entity/Q12056060 | Stannis Baratheon | male | Seven Kingdoms | Storm's End | The North |
http://www.wikidata.org/entity/Q12815803 | Rickon Stark | male | Seven Kingdoms | Winterfell | The North |
http://www.wikidata.org/entity/Q12900597 | Joffrey Baratheon | male | Seven Kingdoms | King's Landing | King's Landing |
http://www.wikidata.org/entity/Q12900933 | Margaery Tyrell | female | Seven Kingdoms | Highgarden | Great Sept of Baelor |
http://www.wikidata.org/entity/Q12902445 | Tywin Lannister | male | Seven Kingdoms | Casterly Rock | King's Landing |
http://www.wikidata.org/entity/Q12902594 | Viserys Targaryen | male | Seven Kingdoms | King's Landing | Vaes Dothrak |
http://www.wikidata.org/entity/Q13634884 | Robb Stark | male | Seven Kingdoms | Riverrun | Twins |
http://www.wikidata.org/entity/Q13634885 | Robert Baratheon | male | Seven Kingdoms | Storm's End | King's Landing |
http://www.wikidata.org/entity/Q17355556 | Janos Slynt | male | Seven Kingdoms | King's Landing | The North |
http://www.wikidata.org/entity/Q18920137 | Loras Tyrell | male | Seven Kingdoms | Highgarden | Great Sept of Baelor |
http://www.wikidata.org/entity/Q19791067 | Lysa Arryn | female | Seven Kingdoms | Riverrun | Eyrie |
http://www.wikidata.org/entity/Q23730371 | Hoster Tully | male | Seven Kingdoms | Riverrun | Winterfell |
http://www.wikidata.org/entity/Q23747242 | Shireen Baratheon | female | Seven Kingdoms | Dragonstone | The North |
http://www.wikidata.org/entity/Q23759020 | Rickard Stark | male | Seven Kingdoms | Winterfell | King's Landing |
http://www.wikidata.org/entity/Q23759067 | Benjen Stark | male | Seven Kingdoms | Winterfell | Beyond the Wall |
http://www.wikidata.org/entity/Q23759071 | Lyanna Stark | female | Seven Kingdoms | Winterfell | Tower of Joy |
http://www.wikidata.org/entity/Q23782360 | Brynden Tully | male | Seven Kingdoms | Riverrun | Riverrun |
http://www.wikidata.org/entity/Q23782368 | Walder Frey | male | Seven Kingdoms | Twins | Twins |
http://www.wikidata.org/entity/Q24814689 | Aemon Targaryen | male | Seven Kingdoms | King's Landing | Castle Black |
http://www.wikidata.org/entity/Q28468107 | Doran Martell | male | Seven Kingdoms | Sunspear | Dorne |
http://www.wikidata.org/entity/Q55433701 | Jojen Reed | male | Seven Kingdoms | Greywater Watch | Beyond the Wall |
The result of this query is nicely tabular and can be exported to CSV format to be imported to our favorite relational database or spreadsheet - but it does not contain 117 entries any more but only 28. SPARQL queries will not return "NULL" values as our relational database query language SQL would. The query needs to be amended with the "OPTIONAL" keyword as shown below.
Naive Game of Thrones Character tabular query with OPTIONAL
# Game of Thrones Characters
SELECT
?item ?itemLabel
?genderLabel
?countryLabel
?placeOfBirthLabel
?placeOfDeathLabel
WHERE
{
?item wdt:P31 wd:Q20086263. # must be a game of thrones character
OPTIONAL { ?item wdt:P21 ?gender}.
OPTIONAL { ?item wdt:P27 ?country}.
OPTIONAL { ?item wdt:P19 ?placeOfBirth}.
OPTIONAL { ?item wdt:P20 ?placeOfDeath}.
SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }
}
This table looks promising it has 117 entries and the columns are filled as expected.
The real surprise for a novice will be the result of the Query below when three more columns have been added. All over sudden the query result has 304 rows for our 117 characters. There are duplicate rows for each character and strange combinations of entries. A notorious example seems to be Jorah Mormont having 8 different values for the "occupation" column.
Naive Game of Thrones Character tabular query with duplicate rows for some characters
# Game of Thrones Characters
SELECT
?item ?itemLabel
?genderLabel
?countryLabel
?placeOfBirthLabel
?placeOfDeathLabel
?killedByLabel
?familyLabel
?occupationLabel
WHERE
{
?item wdt:P31 wd:Q20086263. # must be a game of thrones character
OPTIONAL { ?item wdt:P21 ?gender}.
OPTIONAL { ?item wdt:P27 ?country}.
OPTIONAL { ?item wdt:P19 ?placeOfBirth}.
OPTIONAL { ?item wdt:P20 ?placeOfDeath}.
OPTIONAL { ?item wdt:P157 ?killedBy}.
OPTIONAL { ?item wdt:P53 ?family}.
OPTIONAL { ?item wdt:P106 ?occupation}.
SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }
}
try Beer! If you set min% to 40 and then Generate the SPARQL Query the naive query is something like:
# truly tabular naive query for
# Q44:beer
# generated by trulytabular.py version 0.4.6 on 2022-08-08T15:06:07.716686
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?beerItem ?beer
?image
?manufacturerItem
?Google_Knowledge_Graph_ID
WHERE {
# instanceof Q44:beer
?beerItem wdt:P31 wd:Q44.
# label
?beerItem rdfs:label ?beer.
FILTER (LANG(?beer) = "en").
# image (P18)
OPTIONAL {
?beerItem wdt:P18 ?image.
}
# manufacturer (P176)
OPTIONAL {
?beerItem wdt:P176 ?manufacturerItem.
?manufacturerItem rdfs:label ?manufacturer.
FILTER (LANG(?manufacturer) = "en").
}
# Google Knowledge Graph ID (P2671)
OPTIONAL {
?beerItem wdt:P2671 ?Google_Knowledge_Graph_ID.
}
}
OPTIONAL { ?conference wdt:P1813 ?short_name }
This naive approach will lead to more results for Step 3 (e.g. 7730) than for step 2 (e.g. 7695) which is a surprise for most novices since this effect would not happen with a similar SQL query
SELECT short_name,country,title from academic_conference
# Academic conference wikidata query
# WF 2021-01-30
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?conference ?conferenceLabel
WHERE
{
# academic conference series (Q2020153)
?conference wdt:P31 wd:Q2020153.
# label
?conference rdfs:label ?conferenceLabel filter (lang(?conferenceLabel) = "en").
}
conference | conferenceLabel |
---|---|
http://www.wikidata.org/entity/Q75698988 | The 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies |
http://www.wikidata.org/entity/Q75707991 | Digital Humanities 2020 |
http://www.wikidata.org/entity/Q75709854 | Digital Humanities 2018 |
... |
# Academic conference wikidata query
# WF 2021-01-30
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT
?conference ?conferenceLabel
?short_name
?country
?title
WHERE
{
# academic conference series (Q2020153)
?conference wdt:P31 wd:Q2020153.
# label
?conference rdfs:label ?conferenceLabel filter (lang(?conferenceLabel) = "en").
# short name
OPTIONAL { ?conference wdt:P1813 ?short_name }
# country
OPTIONAL { ?conference wdt:P17 ?country }
# title
OPTIONAL { ?conference wdt:P1476 ?title }
}
# truly tabular query for
# Q1667921:novel series
# generated by trulytabular.py on 2022-07-27T17:33:43.681991
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?novel_series ?novel_seriesLabel
?instance_of
?language_of_work_or_name
?genre
?author
?country_of_origin
?has_part_s_
?publication_date
?Freebase_ID
?ISFDB_series_ID
?title
?Google_Knowledge_Graph_ID
WHERE {
# instanceof Q1667921:novel series
?novel_series wdt:P31 wd:Q1667921.
# label
?novel_series rdfs:label ?novel_seriesLabel
FILTER (LANG(?novel_seriesLabel) = "en").
# instance of (P31)
OPTIONAL { ?novel_series wdt:P31 ?instance_of. }
# language of work or name (P407)
OPTIONAL { ?novel_series wdt:P407 ?language_of_work_or_name. }
# genre (P136)
OPTIONAL { ?novel_series wdt:P136 ?genre. }
# author (P50)
OPTIONAL { ?novel_series wdt:P50 ?author. }
# country of origin (P495)
OPTIONAL { ?novel_series wdt:P495 ?country_of_origin. }
# has part(s) (P527)
OPTIONAL { ?novel_series wdt:P527 ?has_part_s_. }
# publication date (P577)
OPTIONAL { ?novel_series wdt:P577 ?publication_date. }
# Freebase ID (P646)
OPTIONAL { ?novel_series wdt:P646 ?Freebase_ID. }
# ISFDB series ID (P1235)
OPTIONAL { ?novel_series wdt:P1235 ?ISFDB_series_ID. }
# title (P1476)
OPTIONAL { ?novel_series wdt:P1476 ?title. }
# Google Knowledge Graph ID (P2671)
OPTIONAL { ?novel_series wdt:P2671 ?Google_Knowledge_Graph_ID. }
}
# truly tabular query for
# Q1667921:novel series
# generated by trulytabular.py on 2022-07-27T17:33:43.681991
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT DISTINCT ?novel_series ?novel_seriesLabel
(SAMPLE (?instance_of) AS ?instance_of )
(SAMPLE (?language_of_work_or_name) AS ?language_of_work_or_name)
(SAMPLE (?genre) AS ?genre)
(SAMPLE (?author) AS ?author)
(SAMPLE (?country_of_origin) AS ?country_of_origin)
(SAMPLE (?has_part_s_) AS ?has_part_s_)
(SAMPLE (?publication_date) AS ?publication_date)
(SAMPLE (?Freebase_ID) AS ?Freebase_ID)
(SAMPLE (?ISFDB_series_ID) AS ?ISFDB_series_ID)
(SAMPLE (?title) AS ?title )
(SAMPLE (?Google_Knowledge_Graph_ID) AS ?Google_Knowledge_Graph_ID)
WHERE {
# instanceof Q1667921:novel series
?novel_series wdt:P31 wd:Q1667921.
# label
?novel_series rdfs:label ?novel_seriesLabel
FILTER (LANG(?novel_seriesLabel) = "en").
# instance of (P31)
OPTIONAL { ?novel_series wdt:P31 ?instance_of. }
# language of work or name (P407)
OPTIONAL { ?novel_series wdt:P407 ?language_of_work_or_name. }
# genre (P136)
OPTIONAL { ?novel_series wdt:P136 ?genre. }
# author (P50)
OPTIONAL { ?novel_series wdt:P50 ?author. }
# country of origin (P495)
OPTIONAL { ?novel_series wdt:P495 ?country_of_origin. }
# has part(s) (P527)
OPTIONAL { ?novel_series wdt:P527 ?has_part_s_. }
# publication date (P577)
OPTIONAL { ?novel_series wdt:P577 ?publication_date. }
# Freebase ID (P646)
OPTIONAL { ?novel_series wdt:P646 ?Freebase_ID. }
# ISFDB series ID (P1235)
OPTIONAL { ?novel_series wdt:P1235 ?ISFDB_series_ID. }
# title (P1476)
OPTIONAL { ?novel_series wdt:P1476 ?title. }
# Google Knowledge Graph ID (P2671)
OPTIONAL { ?novel_series wdt:P2671 ?Google_Knowledge_Graph_ID. }
} GROUP BY ?novel_series ?novel_seriesLabe
Result as of 2022-03
property | total | f1 | total% | non tabular | non tabular% | f2 | f3 | f14 | f4 | f7 | f5 | f9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
∑ | 7518 | |||||||||||
short name | 6750 | 6741 | 89.8 | 9 | 0.1 | 9 | ||||||
country | 7077 | 7077 | 94.1 | 0 | 0 | |||||||
title | 6718 | 6700 | 89.4 | 18 | 0.3 | 10 | 8 | |||||
part of the series | 7139 | 7120 | 95 | 19 | 0.3 | 15 | 4 | |||||
VIAF ID | 2096 | 2092 | 27.9 | 4 | 0.2 | 3 | 1 | |||||
GND ID | 3049 | 3043 | 40.6 | 6 | 0.2 | 4 | 2 | |||||
location | 7209 | 7180 | 95.9 | 29 | 0.4 | 24 | 4 | 1 | ||||
start time | 6916 | 6914 | 92 | 2 | 0 | 2 | ||||||
end time | 6912 | 6909 | 91.9 | 3 | 0 | 3 | ||||||
official website | 596 | 586 | 7.9 | 10 | 1.7 | 9 | 1 | |||||
main subject | 1882 | 1722 | 25 | 160 | 8.5 | 131 | 23 | 2 | 2 | 1 | 1 | |
described at URL | 6512 | 6510 | 86.6 | 2 | 0 | 1 | 1 | |||||
language used | 87 | 84 | 1.2 | 3 | 3.4 | 3 | ||||||
is proceedings from | 921 | 901 | 12.3 | 20 | 2.2 | 16 | 3 | 1 | ||||
WikiCFP event ID | 98 | 98 | 1.3 | 0 | 0 |