
Tools are discussed happily and quite often.
More often than not the tools determine the methods and not the other way round.
Tools promise to increase the productivity of a team but quite often the opposite
happens.
Tools can be used as an instrument of power if access to them is blocked by license
or know-how issues.

• How did the tool chains for software creation evolve as a means to bridge from
whishes to delivered software?

• What are common reasons for this bridge to fail / the tool chain to break?
• How full traceability for every bit of your software is the key to a successful tool

chain.
• What does a typical set of software development tools look like these days?
• The “git” – story: Why are open tool chain approaches so successful
• What are people expecting from a tool chain and it’s supplier?

Softwareentwicklung die passt

2/22

CEO and owner of BITPlan GmbH
Wolfgang Fahl is Diplom-Informatiker and CEO of BITPlan GmbH. He has been
working in software engineering for 25 years.
Software quality is particularly close to his heart, since he helped develop software
for life-sustaining systems. Since 1996, Wolfgang Fahl is serving actively as a
consultant and entrepreneur for organizations that develop software so that the
result “fits”.

2/22

Softwareentwicklung die passt

As long as the software is written by the person also specifies the requirements for
the software the FBTT approach is possible. The main tool is then the human brain.
The quality of the result depends entirely on the skill of the "hacker" which converts
the software on the basis of his ideas directly from your code.

The lone programmer must be familiar with the subject area for which the software is
to be created. Therefore for domains outside of the computer science disciplines
the only suitable people are those which have acquired programming skills in
addition to their domain knowledge.

A number of successful commercial software for different industries arose in this
way. It is interesting that the better understanding of content has often enough
impact to more than offset the worse programming skills in comparison to
professional computer scientists. So quite a few industry solutions from in the last
century where initially created in this way.
Only with time and increasing success in the market there was a need to expand the
software development process and improve.

3/22

Softwareentwicklung die passt

As soon as two or more people are involved in software development, it is no longer
ensured that the requirements are actually implemented as intended.
The dilemma of human communication is at work here.
"That I have not said" and "You simply can not understand me" are some popular
book titles about human communication illustrating this point.
From the point on where a two- or more-brain tool chain is applied all the problems
arise that stem from the distribution of knowledge.
The binding state of the software is still defined by what is in the source code.
Only when changing the programmer it is conceivable whether this approach will be
feasible in the long term.
Software created on a contract basis is still very often produced today by a two-brain
process.

4/22

5/22

What is defining the quality of software?
• How well does what is communicated match with what is intended?
• What is the best possible match between what is intended and what is

communicated?
• How well does what is delivered match with what is communicated?
• What is the best possible match between what is delivered and what is

communicated?
• How well does what is delivered match what is intended?
• What is the best possible match between what is delivered and what is intended?

The activities on the left side of the bridge are about finding out what the software
should do and how the software should do it.

The activities on the right side of the bridge are about the technical implementation
of “what is communicated" in bits and bytes and then finally delivered this software.

With the increasing complexity of software and the organizations developing it, the
tasks at hand need to be distributed between more and more brains and the need
for methods and tools increases.

6/22

What is the best way for passing over the bridge? After it had been established that
is not so easy to create software that stakeholders are satisfied with the result, there
were some suggestions:
• process Improvement
• usage of methods
• usage of tools
each pursuing the objective to improve the software development. The typical quality
attributes of the final software product can also be applied to the way over the
bridge.
The agile manifesto states:
“… We have come to value… Individuals and interactions over processes and tools”
– “ … That is, while there is value in the items on the right, we value the items on the
left more. …”
see http://agilemanifesto.org
The provoking "Man or tool" argument as shown above or even "man vs. tool" I
personally think is overdone. I personally do not subscribe to the claim of the English
Wikipedia "CASE" article.? "CASE tools were At Their Peak in the Early 1990s"
either.

http://agilemanifesto.org

7/22

Many ideas have been invented, how software can be developed in the most well
organized manner. Most of these ideas make use of the above terms:
• Phases: the time distribution and decision about the sequence of activities
• Roles: the division of labor for the work items involved
• Documents: establishing the required result types
• Methods / tools: the systematic and (semi-) automated processing

The corresponding Wikipedia article
http://de.wikipedia.org/wiki/Liste_von_Softwareentwicklungsprozessen
lists over 30 different process models for software development.
Accordingly, the list of possible methods and tools is considerably longer.
See also
http://en.wikipedia.org/wiki/List_of_software_development_philosophies
with an even longer list of principles that are suggested to be applied.

http://de.wikipedia.org/wiki/Liste_von_Softwareentwicklungsprozessen
http://en.wikipedia.org/wiki/List_of_software_development_philosophies

8/22

The example shown above shows five steps across the bridge with two supporting
cross-cutting functions. In total there are 7 roles to be filled. For all of these roles and
functions, there are specific methods and tools

9/22

As an example, lets for once take the "first building block" of the bridge and examine
it (in a non exhaustive way).
It is readily apparent that the time that is available for this presentation is by no
means sufficient to look at the entire landscape of software engineering tools and
methods possible into this level of detail.
This is fortunately not what the presentation is about and is stated her only to adjust
expectations a bit.

10/22

No matter what tools are available, the use or non-use of tools leads to some
standard problems. A small but important selection is shown above.
Tools only make sense if they are available, understood and accepted. The
Cockburn test may be applied in this sense not only for methodologies but it is also
valid for tools:
See Alistair Cockburn, Agile Software Development, p 145:
• The project was delivered ..
• The leadership remained intact
• The people on the project would work the same way again

I.e. the tools must have been really productive and worked with in to useful way.
The project or the organization / group has "survived" the use of tools - such as it is
not gone bankrupt.
The parties would voluntarily use the tool/the tools again the next time.

11/22

When it comes to breaking it can be applied to the bridge metaphor as well as the
chain metaphor.
A broken bridge is as useless in connecting two sides as a broken chain is.

The usage of tools can cause the opposite of what is intended. This effect is even
stronger with tool chains than with individual tools. These negative effects must be
avoided.

14.05.2013

An important criterion for putting together a tool chain is the assuring the traceability of
results. Superficially, one might think that it is especially important looking forward to the
from requirements to the finished software (in terms of the bridge ie from left to right). But
actually many software projects, suffer from the dilemma of not knowing which part of the
software can be omitted if a specific requirement is waived.

To solve this dilemma it is also necessary to ascertain the trace backward over the bridge
and find out which other requirements may also ask for the bits that might be superfluous
know? As long as this forward-backward (bidirectional) traceability is not applied, a typical
course of software projects will be repeated continuously: after some time the software is
declared to be unmaintainable and redeveloped from scratch. It can be assumed that a well
design tool chain could help to avoid this situation?

See also http://en.wikipedia.org/wiki/Traceability
To enable the traceability of software architecture documents, it is necessary to use unique
cross-references between different results.
Each results needs to have a unique identifier. Ideally, an Internet / Intranet approach is
used to accessed the individual results via regular html hyperlinks?.

The example above shows an example of a hyperlink from the source code to the
requirements management system. (Eclipse - smartGENERATOR / ACGenerator ->
smartRQM)

12/22

http://en.wikipedia.org/wiki/Traceability

13/22

In fact, the market for tools is dominated by oligopolies.
So the tool selection is easy if you limit yourself to the top dogs in the sense of
"nobody ever got fired for buying IBM".
In fact, only very large organizations can afford to develop their own software
development environments. This is somewhat reminiscent of the time when it was
clear that the development and commercialization of operating systems themselves
can fail, the above still so admired IBM and its O2/2 failure being a prominent
example. With Eclipse, IBM has made a significant contribution to the IDEs.
It is amazing that Microsoft is still the market leader with Office in the requirements
management tool segment.

Tools take a crucial role within the software development process. Some tools such
as the compiler and editor are indispensable, others only more or less useful. The
above statistics on the use of different types of tools are based on a survey. The
survey was first started among the participants of BITPlan CPSA-F students and
later published online to let more people take part in it. So far some 60
organizations have filled in their tool chain setup. It shows that the tool chains are
getting more and more complete, even if the proportion of organizations with
significant gaps in the tool chain is still quite striking.

The list of requested tools was limited to 10 - test tools in particular were not
queried. Indeed, there are of course many more tools. In particular, if we would add
any IDE plugin for each type and each utility this would result in an extremely vast
number of possible tools.

14/22

For the most important tool categories there are only a few market governing
vendors.

16/22

GitHub has grown in 5 years (2008-2013) to 6 Million Repositories. In comparison
the Portal “SourceForge” grew to 250.000 Projects in 10 years (2000-2010).

See also http://en.wikipedia.org/wiki/Git_%28software%29

http://www.zdnet.com/github-celebrates-fifth-birthday-3-5-million-users-and-six-
million-repositories-7000013883/

Co-founded by Tom Preston-Werner, Chris Wanstrath and PJ Hyett, GitHub now
employs 158 'hubbernauts'.
GitHub raised $100m in funding last year from Silicon Valley venture capitalist firm,
Andreessen Horowitz.

http://en.wikipedia.org/wiki/Git_%28software%29
http://www.zdnet.com/github-celebrates-fifth-birthday-3-5-million-users-and-six-

17/22

Surprisingly, the collection offered by github tools is relatively straightforward, and
even in some sense smaller than that of competitors. However, the success of
github is greater if measured by the number of users / repositories.

19/22

How would a manifesto for an open tool chain for software engineering look like?

Important points are, in my view:

• Tools must be understandable that does not only mean that they are easy to use,
but that the underlying concept does not introduce unnecessary complexity.

• Tools must promote cooperation.
• Tools must provide results which can be connected and therefore traceable. The

links need to be stable and work in both directions. There is not necessarily a
cause-effect relationship, but only a link

• Tools must be useful, that is promote productivity, the investment in effort and cost
for the use of the tool must be nicely returned by the benefits they bring with.

• Tools must be available and accessible. I.e. There should be no technical or
licensing technical barriers to the use of the tool.

• Local, Intranet and Internet use must be equally possible with no restrictions
imposed by the mode of access.

• Tools must work together - the responsibility for the co-operation capability lies
with the tool manufacturers not with the tool users.

From some 60 participants:

Size of font:
24 Points = 1 Vote
Per extra vote font size increases by 2 points
(amount in EUR that people would invest)

Softwareentwicklung die passt

22/22

